학습모델
-
폴리페이스 - 데이터 학습시키기사이드 프로젝트/폴리페이스 2017. 10. 12. 21:21
데이터 구하고 가공하기에서 한 작업은 정치인들의 사진을 인터넷에서 크롤링 한 후 정확도 향상을 위해 사진에서 얼굴 부분만 추려낸 후 이 것을 Tensorflow서 사용 할 수 있는 파일 형식인 tfrecord로 변환하는 작업이었다. 이제는 변환된 데이터를 이용해서 학습을 시키는 일만 남았다. 이번 포스팅에서는 데이터를 학습시키는 과정들을 쭉 살펴보려고 한다. 1. Tensorflow 설치하기 (feat, 그래픽 카드 없이는 못쓴다) Tensorflow는 내 데스크탑에 그래픽 카드가 있느냐 아니면 없느냐에 따라서 설치 명령어가 달라진다. (tensorflow)$ pip install --upgrade tensorflow # for Python 2.7 (tensorflow)$ pip3 install --up..
-
오버피팅(Overfitting)개발/인공지능 2017. 8. 10. 21:18
학습 능률을 높인다는 것은 비용함수(Cost function)의 값을 줄이는 것입니다. 하지만 학습에 사용하는 Feature(쎄타라고 생각하시면 됩니다)의 개수가 일정하면 Gradient Decent와 같은 최적화 작업을 통해 통해 최적의 해에 도달 했다고 해도 절대적인 비용은 어쩔 수가 없습니다. 최대한 학습 데이터를 따르는 직선을 만들었지만 그래도 비용은 어쩔수가 없네요. 그런데 우리가 직선이 아니라 볼록한 함수를 이용해서 학습한다면 어떨까요? 쎄타2를 추가하고 이때의 x는 제곱으로 본다고 합시다. 여러차례 최적화 작업을 거치면서 아래로 볼록한 함수가 나온다면 데이터의 흐름을 잘 따를 수 있을 것 같습니다. 실제로 그림으로 그려보봐도 그렇네요. 데이터 흐름을 더 잘 따라가는 것 같습니다. 실제로 계산..